How to use GRTensorII to do Calculation

Answer to problem 5.4.3

Return to Chapter 5

General Relativity

Dynamic Implications

> grtw();

> makeg(spacetime);

Makeg 2.0: GRTensor metric/basis entry utility

To quit makeg, type 'exit' at any prompt.

Do you wish to enter a 1) metric [g(dn,dn)],

2) line element [ds],

3) non-holonomic basis [e(1)...e(n)], or

4) NP tetrad [l,n,m,mbar]?

 

makeg>1;

Enter coordinates as a LIST (eg. [t,r,theta,phi]):

makeg>[ct,x,y,z];

Is the metric 1) Diagonal, or

2) Symmetric?

makeg>1;

Enter g[ct,ct]:

makeg>((1+((A(ct))*x)+((F(ct))*y)+((G(ct))*z))^2);

Enter g[x,x]:

makeg>-1;

Enter g[y,y]:

makeg>-1;

Enter g[z,z]:

makeg>-1;

If there are any complex valued coordinates, constants or functions

for this spacetime, please enter them as a SET ( eg. { z, psi } ).

Complex quantities [default={}]:

makeg>{};

You may choose to 0) Use the metric WITHOUT saving it,

1) Save the metric as it is,

2) Correct an element of the metric,

3) Re-enter the metric,

4) Add/change constraint equations,

5) Add a text description, or

6) Abandon this metric and return to Maple.

 

makeg>1;

Information written to: `C:/Grtii(6)/Metrics/spacetime.mpl`

Do you wish to use this spacetime in the current session?

(1=yes [default], other=no):

makeg>1;

Initializing: spacetime

makeg() completed.

> grcalc(R(up,dn,dn,dn));

Created definition for R(up,dn,dn,dn)

> grdisplay(R(up,dn,dn,dn));

>

Return to Chapter 5

General Relativity

Dynamic Implications